Expression and functional analysis of the CorA-MRS2-ALR-type magnesium transporter family in rice.
نویسندگان
چکیده
Maintenance of an appropriate magnesium ion (Mg(2+)) concentration is essential for plant growth. In Arabidopsis thaliana, the CorA-MRS2-ALR-type proteins, named MRS2/MGT family proteins, are reportedly localized in various membranes and they function in Mg transport. However, knowledge of this family in other plant species is extremely limited. Furthermore, differential diversification among dicot and monocot plants suggested by phylogenetic analysis indicates that the role of the Arabidopsis MRS2/MGT family proteins is not the same in monocot plants. For a further understanding of this family in higher plants, functional analysis and gene expression profiling of rice MRS2/MGT family members were performed. A phylogenetic tree based on the isolated mRNA sequences of nine members of the OsMRS2 family confirmed that the MRS2/MGT family consists of five clades (A-E). A complementation assay in the yeast CM66 strain showed that four of the nine members possessed the Mg(2+) transport ability. Transient green fluorescent protein (GFP) expression in the isolated rice protoplast indicated that OsMRS2-5 and OsMRS2-6, belonging to clades D and A, respectively, localized in the chloroplast. Expression levels of these genes were low in the unexpanded yellow-green leaf, but increased considerably with leaf maturation. In addition, diurnal oscillation of expression was observed, particularly in OsMRS2-6 expression in the expanded leaf blade. We conclude that OsMRS2 family members function as Mg transporters and suggest that the genes belonging to clade A encode the chloroplast-localized Mg(2+) transporter in plants.
منابع مشابه
MNR2 regulates intracellular magnesium storage in Saccharomyces cerevisiae.
Magnesium (Mg) is an essential enzyme cofactor and a key structural component of biological molecules, but relatively little is known about the molecular components required for Mg homeostasis in eukaryotic cells. The yeast genome encodes four characterized members of the CorA Mg transporter superfamily located in the plasma membrane (Alr1 and Alr2) or the mitochondrial inner membrane (Mrs2 and...
متن کاملThe unique nature of mg2+ channels.
Considering the biological abundance and importance of Mg2+, there is a surprising lack of information regarding the proteins that transport Mg2+, the mechanisms by which they do so, and their physiological roles within the cell. The best characterized Mg2+ channel to date is the bacterial protein CorA, present in a wide range of bacterial species. The CorA homolog Mrs2 forms the mitochondrial ...
متن کاملMrs2p Forms a High Conductance Mg2+ Selective Channel in Mitochondria
Members of the CorA-Mrs2-Alr1 superfamily of Mg(2+) transporters are ubiquitous among pro- and eukaryotes. The crystal structure of a bacterial CorA protein has recently been solved, but the mode of ion transport of this protein family remained obscure. Using single channel patch clamping we unequivocally show here that the mitochondrial Mrs2 protein forms a Mg(2+)-selective channel of high con...
متن کاملMagnesium transporters: properties, regulation and structure.
The chemistry of Mg2+ is unique amongst biological cations, and the properties of Mg2+ transport systems reflect this chemistry. Prokaryotes carry three classes of Mg2+ transport systems: CorA, MgtA/B and MgtE. CorA and MgtE are widely distributed in both Eubacteria and Archaea, while the MgtA/B class is found primarily in the Eubacteria. Eukaryotic homologs of CorA, although clearly functional...
متن کاملInsight into renal Mg2+ transporters.
PURPOSE OF REVIEW This review aims to describe the recent findings concerning novel Mg transporters as putative interesting players in renal transepithelial Mg transport. RECENT FINDINGS So far, the best characterized Mg transport proteins are found in prokaryotes and yeast cells. In recent years, phylogenetic analysis and differential gene expression studies have led to the identification of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 54 10 شماره
صفحات -
تاریخ انتشار 2013